2-GHz Single Balanced Mixer

Description

The U2796B-FP is a $2-\mathrm{GHz}$ down conversion mixer for telecommunication systems, e.g. cellular radio, CT1, CT2, DECT, PCN, using TELEFUNKEN advanced bipolar technology. The U2796B is well suited for the receiver

Features

- Supply voltage range: 2.7 to 5.5 V
- Exellent isolation characteristics
- Low current consumption: 3.2 mA without $\mathrm{R}_{\mathrm{IP} 3}$
- IIP3 programmable
- Input frequency operating range up to 2 GHz
- RF characteristic nearly independent of supply voltage
portion of the RF circuit. Single balanced structure has been chosen for the best noise performance and low current consumption. The IIP3 is programmable.

Benefits

- Stand alone product
- Low current consumption extends talk time
- 3-V operation requires small space for batteries

Block diagram

Temic

U2796B-FP

TELEFUNKEN Semiconductors

Pin out

Pin description

Pin	Symbol	Function
1	$\mathrm{~V}_{\mathrm{S}}$	Supply voltage
2	RF	RF input and IIP3 programming port
3	BP_{C}	By-pass capacitor
4	IFo	IF output
5	IFo	IF output
6	GND	Ground
7	LO_{i}	Local oscillator input
8	GND	Ground

Absolute maximum ratings

	Parameters	Symbol	Value	Unit
Supply voltage	Pin 1	V_{S}	6	V
Input voltage	Pins $2,3,4,5$ and 7	$\mathrm{~V}_{\mathrm{i}}$	0 to V_{S}	V
Junction temperature	T_{j}	125	${ }^{\circ} \mathrm{C}$	
Storage temperature		$\mathrm{T}_{\text {stg }}$	-40 to +125	${ }^{\circ} \mathrm{C}$

Operating range

Parameters	Symbol	Value	Unit	
Supply voltage range	Pin 1	$\mathrm{~V}_{\mathrm{S}}$	2.7 to 5.5	V
Ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-40 to +85	${ }^{\circ} \mathrm{C}$	

Thermal resistance

	Parameters	Symbol	Value	Unit
Junction ambient	SO 8	$\mathrm{R}_{\text {thJA }}$	175	K/W

TELEFUNKEN Semiconductors

U2796B-FP

Electrical characteristics

Test conditions (unless otherwise specified):
$\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{f}_{\mathrm{LO}}=900 \mathrm{MHz} ; \mathrm{I}_{\mathrm{M}}=1.2 \mathrm{~mA}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$. System impedance $\mathrm{Z}_{\mathrm{O}}=50 \Omega$

Parameters	Test conditions / Pin	Symbol	Min.	Typ.	Max.	Unit
Supply voltage	Pin 1	V_{S}	2.7		5.5	V
Supply current	$\mathrm{R}_{\mathrm{IP} 3}=\infty, \quad$ Pin 1	$\mathrm{I}_{\text {S }}$	2.8	3.2	3.7	mA
Conversion power gain	$\begin{aligned} & \mathrm{RL}=3 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{IP} 3}=\infty \\ & \mathrm{f}_{\mathrm{LO}}=900 \mathrm{MHz} \end{aligned}$	PG_{C}		9		dB
Figure 4	$\begin{aligned} & \mathrm{f}_{\mathrm{LO}}=1700 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{IF}}=45 \mathrm{MHz} \end{aligned}$			9		
Isolation						
LO-spurious at $\mathrm{RF}_{\text {in }}$	$\mathrm{Pi}_{\mathrm{LO}}=-10 \mathrm{dBm}$ Figure $5 \quad$ Pin 7 to 2	$\mathrm{IS}_{\text {LORF }}$			-35	dBm
RF to LO	$\begin{aligned} & \mathrm{Pi}_{\mathrm{RF}}=-25 \mathrm{dBm} \text { Pin } 2 \text { to } 7 \\ & \mathrm{f}_{\mathrm{LO}}=900 \mathrm{MHz} \end{aligned}$	$\mathrm{IS}_{\mathrm{RFLO}}$	30	40		dB
Figure 6	$\mathrm{f}_{\mathrm{LO}}=1700 \mathrm{MHz}$			20		
Operating frequencies						
RF frequency	Pin 2	RFi	2000			MHz
$\mathrm{LO}_{\text {in }}$ frequency	Pin 7	LO_{i}	2000			MHz
$\mathrm{IF}_{\text {out }}$ frequency	Pins 4 and 5	IF_{0}	300			MHz
Input level						
RF input (-1 dB comp.)	$\mathrm{RL}=50 \Omega, \quad$ Pin 2	Pi ${ }_{\text {RF }}$		-15		dBm
3rd order intercept point	$\begin{aligned} & \hline \mathrm{Pi}_{\mathrm{LO}}=-10 \mathrm{dBm}, \mathrm{R}_{\mathrm{IP3} 3}=\infty \\ & \text { Figure 2 } \end{aligned}$	IIP3		-4		dBm
LO input	Pin 7	$\mathrm{P}_{\mathrm{iLO}}$		-6	0	dBm
Impedances						
RF input	Pin 2	$\mathrm{Z}_{\text {iRF }}$		25		Ω
LO input	Pin 7	$\mathrm{Zi}_{\mathrm{LO}}$		50		Ω
IF output	Pins 4 and 5	$\mathrm{Z}_{\mathrm{olF}}$		$\begin{gathered} >10 \mathrm{k} \Omega / / \\ 0.9 \mathrm{pF} \\ \hline \end{gathered}$		
Noise figure (DSB)	$\begin{aligned} & \mathrm{Pi}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{RL}>3 \mathrm{k} \Omega \\ & \mathrm{f}_{\mathrm{LO}}=900 \mathrm{MHz} \\ & \hline \end{aligned}$	NF_{50}		9		dB
Figure 7	$\mathrm{f}_{\mathrm{LO}}=1700 \mathrm{MHz}$			12		
Voltage standing wave ratio LO	Pin 7	VSWR LO		1.3	2	

Note: $\mathrm{I}_{\mathrm{M}}=$ Internal mixer current (see figure 2)

Temic

U2796B-FP

Figure 1. Mixer current $\left(\mathrm{I}_{\mathrm{M}}\right)$ versus RE

Figure 3. Mixer circuitry

Figure 4. Test circuit-conversion power gain $\left(\mathrm{PG}_{\mathrm{C}}\right)$ and 3rd order input intercept point (IIP3)

Figure 5. Test circuit-isolation LO to RF

Figure 6. Test circuit-isolation RF to LO

Figure 7. Test circuit-noise figure

Note:

1. The noise floor of the LO generator might influence the noise figure test result. In order to avoid this, either a band pass or a high pass filter with $\mathrm{fc}>\mathrm{f}_{\mathrm{IF}}$ should be implemented.
2. If IF output network does not provide sufficient suppression of the LO component, a low pass filter should be inserted to avoid overdriving the noise figure meter.
3. For best noise performance 0 dBm LO power level is required.

Figure 8. S11 RF input impedance

Figure 9. S11 LO input impedance

Application circuit

Figure 10

Recommended values for the evaluator

C_{1} and $\mathrm{C}_{2}=150 \mathrm{pF}, \mathrm{C}_{3}$ and $\mathrm{C}_{4}=100 \mathrm{nF} . \mathrm{C}_{\mathrm{r}}$ is calculated for resonance with the balun at f_{IF}, or as a high pass filter for f_{LO}. The output balun transformer ratio $>=8: 1$ for Z_{O} $=50 \Omega \mathrm{R}_{2}$ increases the IF output level and is calculated from:
$R_{2}=\frac{V_{S}(4,5)-V_{S}(1)}{I_{S}(1)}$

For example $\mathrm{V}_{\mathrm{S}}(4,5)=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}(1)=3 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}(1)=2.2 \mathrm{~mA}$ $R_{2} \approx 470 \Omega$, where $I_{S}(1)$ is the current consumption without the mixer stage.

Application Hint

The output transformer at the pins 4 and 5 can be replaced by LC-circuits like one of the following proposals, which are saving space compared to the transformer and are suitable for higher IF frequencies. When applying one of these solutions, it has to be checked whether the requirements on noise figure and gain can be achieved.

The second circuit was dimensioned for approximately 130 MHz and a load resistance of 50Ω. If for instance the impedance of a subsequent filter is $1 \mathrm{k} \Omega$, the capacitive voltage divider may be left out.

959632

Evaluation board

Dimensions in mm

SO 8 package

We reserve the right to make changes to improve technical design without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 (0)7131 67 2831, Fax Number: 49 (0)7131 672423

